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Diffusion models and scale-up
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Abstract

A model for mass transfer processes in column apparatuses has been done. The model may be modified for different volume source
(chemical reaction, interphase mass transfer). The using of the average velocities and concentration permits to solve the scale-up
problem. A hierarchical approach for model parameter identification has been proposed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many mass transfer processes in column apparatuses
may be described by the convection–diffusion equation
with a volume reaction [1]. These are gas absorption in col-
umn with (or without) packet bed [2,3], chemical reactors
for homogeneous or heterogeneous reactions [4], air-lift
reactors for biochemical or photochemical reactions [5–8].

The convective transfer in column apparatuses is result
of a laminar or turbulent (large-scale pulsation�s) flows.
The diffusive transfer is molecular or turbulent (small-scale
pulsation�s) The volume reaction is mass sours as a result of
chemical reactions or interphase mass transfer [1,2].

The scale-up theory [1,2] show that the scale effect in
mathematical modeling is result of the radial non-unifor-
mity of the velocity distribution in the column. In many
papers [2] are used diffusion models, where the scale effect
is considered as an axial mixing increasing.

The creation of the models in these conditions and
solving of the scale-up problem [4,7] require construction
of a suitable diffusion models.
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2. Diffusion model

Let�s consider liquid motion in column apparatus with
chemical reaction between two of the liquid components.
If the difference between component concentrations is very
big, the chemical reaction order will be one. In the case
of liquid circulation the process will be non-stationary. If
suppose for velocity and concentration distribution in the
column:

u ¼ uðr; zÞ; y ¼ vðr; zÞ; c ¼ cðt; r; zÞ; ð1Þ

the mathematical description has the form:
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where u and v are velocities components, c-concentration
of the reagent (with small concentration), k-chemical reac-
tion rate constant, t-the time, r and z-radial and axial coor-
dinate, D-diffusivity, c0-initial concentration, �cðt; lÞ and
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Nomenclature

c concentration [kg/m3]
D diffusivity [m2/s]
k chemical reaction (interphase mass transfer) rate

coefficient [s�1]
r radial coordinate [m]
R column radius [m]
t time [s]
u axial velocity component [m/s]

v radial velocity component [m/s]
z axial coordinate [m]

Greek symbols

e hold-up
u angle coordinate [rad]
v Henry�s number
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�uð0Þ-average concentrations and the velocity at the inlet
(outlet) of the column, R and l-column radius and height.

The radial non-uniformity of the velocity is the cause for
the scale effect (decreasing of the process efficiency with
increasing of the column diameter) in the column scale-
up. That is why average velocity and concentration for
the cross-section�s area must be used. It leads to big priority
beside experimental data obtaining for the parameters
identification, because the measurement of the average
concentration is very simple in comparison with the local
concentration measurement.
3. Average function values

Let consider cylinder with R = R(u) where u is an angle
in cylindrical coordinates (z, r, u). The average values of a
function f(z, r, u) for the cross section�s area is:
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For a circular cylinder R = const and from (3, 4) follow:
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For the average values of the velocity and concentration
for the cross-section�s area from (5) follow:
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The functions (1) may be presented by the help of the
average function (6):
uðr; zÞ ¼ �uðzÞ~uðr; zÞ; vðr; zÞ ¼ �vðzÞ~vðr; zÞ;
cðt; r; zÞ ¼ �cðt; zÞ~cðr; zÞ; ð7Þ

where
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4. Average concentration model

The average concentration model may be obtained if put
(7) in (2), multiply with r and to integrate over r in the
interval [0,R] the equations in (2). As a result is obtained:
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The average radial velocity component �v may be
obtained from the continuity equation in (2), if multiply
with r2 and to integrate over r in the interval [0,R]:

�v ¼ b
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If put (11) in (9), the diffusion model has the form:
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In the model (13) �u is average velocity of the laminar or
turbulent flow in the column, D is diffusivity or turbulent
diffusivity (as a result of the small scale pulsations). The
model parameters a, b and c are related with the radial
non-uniformity and show the influence of the column
radius on the mass transfer kinetics.

The parameter k in the model (13) may be obtained
beforehand as a result of the chemical kinetics modeling.
If the velocity and concentration radial non-uniformities
are independent from the axial coordinate z, the para-
meters a and c are related with the column radius only,
b = 0. A constant average velocity in these conditions leads
to very simple model (o�u

oz ¼ 0).
The parameters in the diffusion model (13) show the

influence of the scale-up (column radius increase) of the
mass transfer kinetics.

The identification of the parameters a, b, c and D may
be made by using experimental data for average velocity
and concentration, obtained on the laboratory model. In
the cases of scale-up must be obtained a(R,z), b(R,z) and
c(R,z) only (using real column), because the values of D
and k are the same.

5. Interphase mass transfer model

In the cases of interphase mass transfer in gas–liquid or
liquid–liquid systems, in the model Eq. (2) must be to intro-
duce convection–diffusion equations for the two phases
and the chemical reaction rate must be replaced with inter-
phase mass transfer rate:

kðc1 � vc2Þ; ð15Þ
where k is interphase mass transfer coefficient, c1-concen-
tration of the transferred substance in the gas (liquid)
phase, c2-the concentration of the transferred substance
in the liquid phase, v-Henry�s number (liquid–liquid distri-
bution coefficient).

As a result the diffusion model for interphase mass
transfer in the column apparatuses has the form:
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where Di and ei(i = 1,2) are diffusivities and hold-up coeffi-
cients (e1 + e2 = 1). The boundary conditions for (16) are
similar to the boundary conditions in (2), but a difference
is possible depending on the conditions for contact between
two phases.

Let consider counter-current gas–liquid bubble column
with column height l, where c1(z1, r) and c2(z2, r) are con-
centrations of the absorbed substance in the gas and liquid
phases (z1 = l � z2). The boundary conditions of (16) have
the form:
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where �uið0Þ; i ¼ 1; 2; are inlet average velocities in gas and
liquid phases.

The average concentration model may be obtained on
the analogy of (13):
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where ai, bi and ci(i = 1,2) are similar to a, b and c in (10,
14).

The boundary conditions are
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6. Conclusion

The results obtained show that the diffusion models in
column apparatuses permit to change the velocity and con-
centration radial distributions with the averages velocities
and concentration�s for the cross-section�s area of the
column.

These new models permit to identify the model para-
meters using a hierarchical approach. As a first step must
be obtained chemical reaction (or mass transfer) rate con-
stant. The next step is identification of the parameters a,
b, c and D, using experimental data, obtained with real
liquids. The scale-up is a specification of the parameter
values a, b and c for the real apparatus. As a result the
mathematical model may be used for the simulation of real
column apparatus processes.
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